商业研究

• 公司治理 • 上一篇    下一篇

上市公司信息披露的文字主观叙述与盈余操纵 ——基于机器学习法提取主观模式的研究

毛怡欣   

  1. (厦门大学 管理学院,福建 厦门 361005)
  • 收稿日期:2018-08-01 出版日期:2019-01-17
  • 作者简介:毛怡欣(1989-),女,四川崇州人,厦门大学管理学院博士研究生, 研究方向:公司治理与财务。

Subjective Textual Description in Listed Companies′ Information Disclosure and Earnings Manipulation:Research based on Machine Learning Method for Extracting Subjective Patterns

MAO Yi-xin   

  1. (School of Management, Xiamen University,Xiamen 361005,China)
  • Received:2018-08-01 Online:2019-01-17

摘要: 选取2006-2016年沪深A股上市公司样本,研究上市公司是否会操纵文字信息披露,以更主观的方式叙述来配合上市公司的盈余操纵行为。利用机器学习法提取2-POS主观模式,构建了可量化的文字叙述的主观性指标,通过实证检验发现,处于财务重述前,即在盈余操纵隐藏期间,上市公司年报中使用的主观句比例更高、整体主观性分数也更高;进一步的研究发现,良好的外部市场环境和内部治理环境会抑制上市公司利用主观色彩更浓的信息叙述来配合其盈余操纵的行为。本文的研究既为上市公司操纵文字信息披露的动机提供了新的证据,补充了财务数据与文字信息披露关系的相关研究,也为监管部门加强信息披露监管以及外部信息使用者判断信息质量提供了新的实证依据。

关键词: 文字叙述, 主观性, 盈余操纵

Abstract: Selecting the sample of Shanghai and Shenzhen A-share listed companies from 2006 to 2016, this paper examines whether listed companies would manipulate text information disclosure and use more subjective textual description to cover up their earnings manipulation behaviors. Machine learning is used to extract 2-POS subjective model and construct quantifiable subjective indicators. Empirical results show that before financial restatement, that is, when earnings manipulation is concealed, listed companies use more subjective sentences in their annual reports and have higher scores with regard to overall subjectivity;developed external market environment and strong corporate governance effectively prevent listed companies taking advantage of subjective text information to work for earnings manipulation. This paper provides a new evidence for motives of listed companies to manipulate narrative disclosure, enriching the research of the relationship between financial data and text information, and also provides a new empirical basis for the supervision department to strengthen the supervision of information disclosure and external information users to judge the quality of information.

Key words: textual description, subjectivity, earnings manipulation