商业研究

• 商经理论 • 上一篇    下一篇

法定数字货币、银行系统稳定与经济增长:理论与预测

郭丽娟,沈沛龙   

  1. (山西财经大学 金融学院,太原 030000)
  • 收稿日期:2020-06-29 出版日期:2020-09-21
  • 作者简介:郭丽娟(1989-),女,山西晋城人,山西财经大学金融学院博士研究生,研究方向:金融工程与风险管理;沈沛龙(1964-),本文通讯作者,男,山西襄汾人,山西财经大学金融学院教授,博士生导师,管理学博士,研究方向:金融工程与风险管理。
  • 基金资助:
    国家社会科学基金项目“健全系统性金融风险预警、防控与应急处置机制研究”,项目编号:18BJY231。

Central Bank Digital Currency, Bank Stability and Economic Growth:Theory and Prediction

GUO Li-juan,SHEN Pei-long   

  1. (School of Finance,Shanxi University of Finance & Economics, Taiyuan 030000,China)
  • Received:2020-06-29 Online:2020-09-21

摘要: 随着数字产业的蓬勃发展及对支付效率与支付安全的需要,央行推出法定数字货币渐行渐近。理论分析表明,我国发行法定数字货币会减少通货数量、增加准备金、提高货币乘数、增加货币供给量、增加货币供给波动性,降低银行系统稳定。同时,将卢卡斯货币经济周期模型与AD-AS模型结合起来对法定数字货币影响经济增长的情况进行讨论,认为法定数字货币的发行作为不可完全预期的货币政策,会在短期内对经济增长产生正向冲击,但这种促进效应在长期内会随着信息的积累而消失。PSO-BP神经网络模型仿真预测结果与理论分析基本一致,显示发行央行数字货币对我国银行系统稳定性的冲击为负向、可控,对经济增长的总体效应短期内为正,进一步的稳健性检验证实了预测结果的可靠性。

关键词: 法定数字货币, 银行系统稳定, 经济增长, PSO-BP神经网络

Abstract: With the vigorous development of the digital industry and the need for payment efficiency and security, the issuance of central bank digital currencies (CBDC)is gradually approaching. Theoretical analysis shows that under the current issuance framework that China may choose, CBDC will reduce the amount of currency, increase reserves, currency multiplier, money supply and the volatility,which will reduce bank system stability. At the same time, combining the Lucas currency business cycle model with the AD-AS model to discuss the impact on economic growth, we believe that the issuance of CBDC as an unpredictable monetary policy will have a positive impact on the economic growth in the short term, but this promotion effect will disappear in the long run. The simulation prediction results of the PSO-BP neural network model are basically consistent with the theoretical analysis, which show that the impact of issuing central bank digital currencies on the stability of China′s banking system is negative and controllable, and the overall effect on economic growth is positive in the short term. Further robustness tests confirmed the reliability of the prediction results.

Key words: central bank digital currency, bank stability, economic growth, PSO-BP neural network